Group Leaders
Laura Inés Furlong Nespolo
Ferran Sanz Carreras
The huge wealth of biomedical information that is currently available is underused because of the difficulties in seeking, integrating and analysing the relevant information. There is also a great difficulty for the identification and use of clinically actionable information. The goal of the Integrative Biomedical Informatics (IBI) group is to develop computational methods and tools to address these challenges, with the aim of better understanding human health and disease and contributing to the design of more effective and safer therapeutic interventions.
The ongoing research lines of the IBI group are:
• New methods and tools for knowledge extraction and linkage from biomedical literature and other publicly available sources.
• Development of strategies for the research reuse of clinical data.
• Network biology for the study of human diseases and drug toxicity.
• Integrative knowledge management and exploitation in drug discovery and development.
Members
Àlex Bravo Serrano (Technician)
Emilio Centeno Ortiz (Technician)
Maria Jesús Donlo Fernández (Research Assistant)
Alfons González Pauner (Technician)
Miquel Àngel Mayer Pujadas (Researcher)
Carina Oliver Dutrem (Research Assistant)
Maria Saarela (Research Assistant)
Tomek Stepniewski (Researcher)
Main Publications
• Bravo A, Li TS, Su AI, Good BM, Furlong LI. Combining machine learning, crowdsourcing and expert knowledge to detect chemical-induced diseases in text. Database (Oxford) 2016; 2016: baw094. IF 2.627. Q1.
• Carrió P, Sanz F, Pastor M. Towards a unifying strategy for the structure-based prediction of toxicological endpoints. Arch Toxicol 2016; 90(10): 2445-2460. IF 6.637. Q1.
• Guixà-González R, Javanainen M, Gómez-Soler M, Cordobilla B, Domingo JC, Sanz F, Pastor M, Ciruela F, Martínez-Seara H, Selent J. Membrane omega-3 fatty acids modulate the oligomerisation kinetics of adenosine A2A and dopamine D2 receptors. Sci Rep 2016; 6: 19839. IF 5.228. Q1.
• Li TS, Bravo A, Furlong LI, Good BM, Su AI . A crowdsourcing workflow for extracting chemical-induced disease relations from free text. Database (Oxford) 2016; 2016: baw051. IF 2.627. Q1.
• Piñero J, Berenstein A, González-Pérez A, Chernomoretz A, Furlong LI. Uncovering disease mechanisms through network biology in the era of Next Generation Sequencing. Sci Rep 2016; 6: 24570. IF 5.228. Q1.
• Queralt N, Piñero J, Bravo A, Sanz F, Furlong LI. DisGeNET-RDF: Harnessing the Innovative Power of the Semantic Web to Explore the Genetic Basis of Diseases. Bioinformatics 2016; 32(14): 2236-2238. IF 5.766. Q1.
• Roberto G, Leal I, Sattar N, Loomis AK, Avillach P, Egger P, van Wijngaarden R, Ansell D, Reisberg S, Tammesoo ML, Alavere H, Pasqua A, Pedersen L, Cunningham J, Tramontan L, Mayer MA, Herings R, Coloma P, Lapi F, Sturkenboom M, van der Lei J, Schuemie MJ, Rijnbeek P, Gini R. Identifying Cases of Type 2 Diabetes in Heterogeneous Data Sources: Strategy from the EMIF Project. PLoS ONE 2016; 11(8): e0160648. IF 3.057. Q1.
• Rodríguez-González A, Menasalvas E, Mayer MA. Automatic extraction and identification of users' responses in Facebook medical quizzes. Comput Meth Prog Biomed 2016; 127: 197-203. IF 1.862. Q1.
Ongoing Research Projects
• Fast-track ELIXIR implementation and drive early user exploitation across the life-sciences
− European Commission (676559)
− From 2015 to 2019
− Principal investigator: Sanz Carreras, Ferran
• iPiE: Intelligence Led Assessment of Pharmaceuticals in the Environment
− Innovative Medicines Initiative - IMI (JU-115735)
− From 2015 to 2018
− Principal investigator: Sanz Carreras, Ferran
• MedBioinformatics: Creating medically-driven integrative bioinformatics applications focused on oncology, CNS disorders and their comorbidities
− European Commission - H2020 (PHC-32-2014-634143)
− From 2015 to 2018
− Principal investigator and coordinator of the applicants’ consortium: Sanz Carreras, Ferran
• MedSisCom: Medicina de sistemas para el estudio de las comorbilidades
− Fondo de Investigación Sanitaria. ISCIII (PI13/00082)
− From 2014 to 2017
− Principal investigator: Furlong Nespolo, Laura I.
• Open PHACTS: Open Pharmacological Concepts Triple Store
− Innovative Medicines Initiative - IMI (115191)
− From 2011 to 2016
− Principal investigator: Sanz Carreras, Ferran
• Open PHACTS-ENSO: An open, integrated and sustainable chemistry, biology and pharmacology knowledge resource for drug discovery
− Complementary grant
− From 2014 to 2016
− Principal investigator: Sanz Carreras, Ferran
• eTOX: Integrating bioinformatics and chemoinformatics approaches for the development of expert systems allowing the in silico prediction of toxicities
− Innovative Medicines Initiative - IMI (115002)
− From 2010 to 2016
− Principal investigator and coordinator of the applicants’ consortium: Sanz Carreras, Ferran
• eTOX - ENSO: Integrating bioinformatics and chemoinformatics approaches for the development of expert systems allowing the in silico prediction of toxicities
− Innovative Medicines Initiative - IMI (115191)
− From 2014 to 2016
− Principal investigator and coordinator of the applicants’ consortium: Sanz Carreras, Ferran
Participation in Research Networks
• GRIB is the node for Biomedical Informatics of the Spanish Institute of Bioinformatics (INB).
• GRIB coordinates the Plataforma Tecnológica Española de Medicamentos Innovadores (PTEMI) jointly with Farmaindustria and Ferran Sanz is the co-president of PTEMI.
• GRIB participates in the Bioinformatics Barcelona Association (BIB) and Ferran Sanz is its vicepresident.
Group’s Recognitions
• Officially recognised as a consolidated research group by the Generalitat de Catalunya: Grup de Recerca en Biomedicina Computacional (2014-2017)
− Agència de Gestió d'Ajuts Universitaris i de Recerca (SGR 1161)
− Principal investigator: Sanz Carreras, Ferran
Theses
• Bravo, A. BeFree: a text mining system for the extraction of biomedical information from the literature. Pompeu Fabra University
− Director: Furlong Nespolo, Laura Inés
− Date of defense: 28/11/2016